Wiki Actu en

August 27, 2008

Wikipedia: Cretaceous

Filed under: — admin @ 6:10 pm
Cretaceous period
145.5 – 65.5 million years ago
PreЄ
Є
O
S
D
C
P
T
J
K
Pg
N
Mean atmospheric O2 content over period duration ca. 30 Vol %[1]
(150 % of modern level)
Mean atmospheric CO2 content over period duration ca. 1700 ppm[2]
(6 times pre-industrial level)
Mean surface temperature over period duration ca. 18 °C [3]
(4 °C above modern level)
Key events in the Cretaceous
view • discuss • 
-140 —
-130 —
-120 —
-110 —
-100 —
-90 —
-80 —
-70 —
Maastrichtian
Campanian
Santonian
Coniacian
Turonian
Cenomanian
Albian
Aptian
Barremian
Hauterivian
Valanginian
Berriasian
Jurassic
Paleogene
 
 
 
 
 
 
C
r
e
t
a
c
e
o
u
s
Mesozoic
Cenozoic
An approximate timescale of key Cretaceous events.
Axis scale: millions of years ago.

The Cretaceous (pronounced /kriːˈteɪʃəs/, usually abbreviated ‘K’ for its German translation “Kreide”) is a geologic period and system, reaching from the end of the Jurassic Period, (145.5 ± 4 million years ago (Ma) to the beginning of the Paleocene Period, 65.5 ± 0.3 Ma. It is the youngest geological period of the Mesozoic, and at 80 million years long, the longest period of the Phanerozoic. The end of the Cretaceous defines the boundary between the Mesozoic and Cenozoic eras.

The Cretaceous (from Latin creta meaning ‘chalk’ [4]) as a separate period was first defined by a Belgian geologist Jean d’Omalius d’Halloy in 1822, using strata in the Paris Basin[5] and named for the extensive beds of chalk (calcium carbonate deposited by the shells of marine invertebrates, principally coccoliths), found in the upper Cretaceous of continental Europe and the British Isles (including the White Cliffs of Dover).

Contents

Dating

As with other older geologic periods, the rock beds that define the Cretaceous are well identified but the exact dates of the period’s start and end are uncertain by a few million years. No great extinction or burst of diversity separated the Cretaceous from the Jurassic. However, the end of the period is most sharply defined, being placed at an iridium-rich layer found worldwide that is believed to be associated with the Chicxulub impact crater in Yucatan and the Gulf of Mexico. This layer has been tightly dated at 65.5 Ma. This bolide collision is probably responsible for the major, extensively-studied Cretaceous–Tertiary extinction event.

Divisions

The Cretaceous is usually separated into Early and Late Cretaceous Epochs. The faunal stages from youngest to oldest are listed below; time is referred to as early or late, and the corresponding rocks are referred to as lower or upper:

Upper/Late Cretaceous
Maastrichtian (70.6 ± 0.6 – 65.8 ± 0.3 Ma)
Campanian (83.5 ± 0.7 – 70.6 ± 0.6 Ma)
Santonian (85.8 ± 0.7 – 83.5 ± 0.7 Ma)
Coniacian (89.3 ± 1.0 – 85.8 ± 0.7 Ma)
Turonian (93.5 ± 0.8 – 89.3 ± 1.0 Ma)
Cenomanian (99.6 ± 0.9 – 93.5 ± 0.8 Ma)
 
Lower/Early Cretaceous
Albian (112.0 ± 1.0 – 99.6 ± 0.9 Ma)
Aptian (125.0 ± 1.0 – 112.0 ± 1.0 Ma)
Barremian (130.0 ± 1.5 – 125.0 ± 1.0 Ma)
Hauterivian (136.4 ± 2.0 – 130.0 ± 1.5 Ma)
Valanginian (140.2 ± 3.0 – 136.4 ± 2.0 Ma)
Berriasian (145.5 ± 4.0 – 140.2 ± 3.0 Ma)

Paleogeography

During the Cretaceous, the late Paleozoic – early Mesozoic supercontinent of Pangaea completed its breakup into present day continents, although their positions were substantially different at the time. As the Atlantic Ocean widened, the convergent-margin orogenies that had begun during the Jurassic continued in the North American Cordillera, as the Nevadan orogeny was followed by the Sevier and Laramide orogenies.

Geography of the US in the Late Cretaceous Period

Geography of the US in the Late Cretaceous Period

Though Gondwana was still intact in the beginning of the Cretaceous, it broke up as South America, Antarctica and Australia rifted away from Africa (though India and Madagascar remained attached to each other); thus, the South Atlantic and Indian Oceans were newly formed. Such active rifting lifted great undersea mountain chains along the welts, raising eustatic sea levels worldwide. To the north of Africa the Tethys Sea continued to narrow. Broad shallow seas advanced across central North America (the Western Interior Seaway) and Europe, then receded late in the period, leaving thick marine deposits sandwiched between coal beds. At the peak of the Cretaceous transgression, one-third of Earth’s present land area was submerged.[6]

The Cretaceous is justly famous for its chalk; indeed, more chalk formed in the Cretaceous than in any other period in the Phanerozoic.[7] Mid-ocean ridge activity — or rather, the circulation of seawater through the enlarged ridges — enriched the oceans in calcium; this made the oceans more saturated, as well as increased the bioavailability of the element for calcareous nanoplankton.[8] These widespread carbonates and other sedimentary deposits make the Cretaceous rock record especially fine. Famous formations from North America include the rich marine fossils of Kansas’s Smoky Hill Chalk Member and the terrestrial fauna of the late Cretaceous Hell Creek Formation. Other important Cretaceous exposures occur in Europe (e.g., the Weald) and China (the Yixian Formation). In the area that is now India, massive lava beds called the Deccan Traps were erupted in the very late Cretaceous and early Paleocene.

Climate

The Berriasian epoch showed a cooling trend that had been seen in the last epoch of the Jurassic. There is evidence that snowfalls were common in the higher latitudes and the tropics became wetter than during the Triassic and Jurassic[9]. Glaciation was however restricted to alpine glaciers on some high-latitude mountains, though seasonal snow may have existed further south.

After the end of the Berriasian, however, temperatures increased again, and these conditions were almost constant until the end of the period[10]. This trend was due to intense volcanic activity which produced large quantities of carbon dioxide. The development of a number of mantle plumes across the widening mid-ocean ridges further pushed sea levels up, so that large areas of the continental crust were covered with shallow seas. The Tethys Sea connecting the tropical oceans east to west also helped in warming the global climate. Warm-adapted plant fossils are known from localities as far north as Alaska and Greenland, while dinosaur fossils have been found within 15 degrees of the Cretaceous south pole.[11]

A very gentle temperature gradient from the equator to the poles meant weaker global winds, contributing to less upwelling and more stagnant oceans than today. This is evidenced by widespread black shale deposition and frequent anoxic events.[12] Sediment cores show that tropical sea surface temperatures may have briefly been as warm as 42 °C (107 °F), 17 °C (31 °F) warmer than at present[when?], and that they averaged around 37 °C (99 °F). Meanwhile deep ocean temperatures were as much as 15 to 20 °C (27 to 36 °F) higher than today’s.[13][14]

Further information: Cool tropics paradox

Life

Plants

Flowering plants (angiosperms) spread during this period, although they did not become predominant until the Campanian stage near the end of the epoch. Their evolution was aided by the appearance of bees; in fact angiosperms and insects are a good example of coevolution. The first representatives of many leafy trees, including figs, planes and magnolias, appeared in the Cretaceous. At the same time, some earlier Mesozoic gymnosperms like Conifers continued to thrive; pehuéns (Monkey Puzzle trees, Araucaria) and other conifers being notably plentiful and widespread, although other gymnosperm taxa like Bennettitales died out before the end of the period.[citation needed]

Terrestrial fauna

Tyrannosaurus rex, one of the largest land predators of all time lived during the late Cretaceous.

Tyrannosaurus rex, one of the largest land predators of all time lived during the late Cretaceous.

A pterosaur, Anhanguera piscator

A pterosaur, Anhanguera piscator

On land, mammals were a small and still relatively minor component of the fauna. The fauna was dominated by archosaurian reptiles, especially dinosaurs, which were at their most diverse. Pterosaurs were common in the early and middle Cretaceous, but as the Cretaceous proceeded they faced growing competition from the adaptive radiation of birds, and by the end of the period only two highly specialised families remained.

The Liaoning lagerstätte (Chaomidianzi formation) in China provides a glimpse of life in the Early Cretaceous, where preserved remains of numerous types of small dinosaurs, birds, and mammals have been found. The coelurosaur dinosaurs found there represent types of the group maniraptora, which is transitional between dinosaurs and birds, and are notable for the presence of hair-like feathers.

During the Cretaceous, insects began to diversify, and the oldest known ants, termites and some lepidopterans, akin to butterflies and moths, appeared. Aphids, grasshoppers, and gall wasps appeared.

Marine fauna

In the seas, rays, modern sharks and teleosts became common. Marine reptiles included ichthyosaurs in the early and middle of the Cretaceous, plesiosaurs throughout the entire period, and mosasaurs in the Late Cretaceous.

Baculites, a genus of straight-shelled form of ammonite, flourished in the seas. The Hesperornithiformes were flightless, marine diving birds that swam like grebes. Globotruncanid Foraminifera and echinoderms such as sea urchins and starfish (sea stars) thrived. The first radiation of the diatoms (generally siliceous, rather than calcareous) in the oceans occurred during the Cretaceous; freshwater diatoms did not appear until the Miocene. The Cretaceous was also an important interval in the evolution of bioerosion, the production of borings and scrapings in rocks, hardgrounds and shells (Taylor and Wilson, 2003).

Extinction

Main article: Cretaceous–Tertiary extinction event

There was a progressive decline in biodiversity during the Maastrichtian stage of the Cretaceous Period prior to the suggested ecological crisis induced by events at the K-T boundary. Furthermore, biodiversity required a substantial amount of time to recover from the K-T event, despite the probable existence of an abundance of vacant ecological niches.[15]

Despite the severity of this boundary event, there was significant variability in the rate of extinction between and within different clades. Species which depended on photosynthesis declined or became extinct because of the reduction in solar energy reaching the earth’s surface due to atmospheric particles blocking the sunlight. As is the case today, photosynthesizing organisms, such as phytoplankton and land plants, formed the primary part of the food chain in the late Cretaceous. Evidence suggests that herbivorous animals, which depended on plants and plankton as their food, died out as their food sources became scarce; consequently, top predators such as Tyrannosaurus rex also perished.[16]

Coccolithophorids and molluscs, including ammonites, rudists, freshwater snails and mussels, as well as organisms whose food chain included these shell builders, became extinct or suffered heavy losses. For example, it is thought that ammonites were the principal food of mosasaurs, a group of giant marine reptiles that became extinct at the boundary.[17]

Omnivores, insectivores and carrion-eaters survived the extinction event, perhaps because of the increased availability of their food sources. At the end of the Cretaceous there seem to have been no purely herbivorous or carnivorous mammals. Mammals and birds which survived the extinction fed on insects, larvae, worms, and snails, which in turn fed on dead plant and animal matter. Scientists theorise that these organisms survived the collapse of plant-based food chains because they fed on detritus.[18][15][19]

In stream communities, few groups of animals became extinct. Stream communities rely less on food from living plants and more on detritus that washes in from land. This particular ecological niche buffered them from extinction.[20] Similar, but more complex patterns have been found in the oceans. Extinction was more severe among animals living in the water column, than among animals living on or in the sea floor. Animals in the water column are almost entirely dependent on primary production from living phytoplankton, while animals living on or in the ocean floor feed on detritus or can switch to detritus feeding.[15]

The largest air-breathing survivors of the event, crocodilians and champsosaurs, were semi-aquatic and had access to detritus. Modern crocodilians can live as scavengers and can survive for months without food, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms or fragments of organisms for their first few years. These characteristics have been linked to crocodilian survival at the end of the Cretaceous.[18]

See also

  • Chalk Formation
  • List of fossil sites (with link directory)
  • Western Interior Seaway

References

  • Kashiyama, Yuichiro; Nanako O. Ogawa, Junichiro Kuroda, Motoo Shiro, Shinya Nomoto, Ryuji Tada, Hiroshi Kitazato, Naohiko Ohkouchi (2008-05). “Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: Nitrogen and carbon isotopic evidence from sedimentary porphyrin”. Organic Geochemistry 39 (5): 532–549. doi:10.1016/j.orggeochem.2007.11.010. Retrieved on 2008-05-10. 
  • Neal L Larson, Steven D Jorgensen, Robert A Farrar and Peter L Larson. Ammonites and the other Cephalopods of the Pierre Seaway. Geoscience Press, 1997.
  • Ogg, Jim; June, 2004, Overview of Global Boundary Stratotype Sections and Points (GSSP’s) http://www.stratigraphy.org/gssp.htm Accessed April 30, 2006.
  • Ovechkina, M.N. and Alekseev, A.S. 2005. Quantitative changes of calcareous nannoflora in the Saratov region (Russian Platform) during the late Maastrichtian warming event. Journal of Iberian Geology 31 (1): 149-165. PDF
  • Rasnitsyn, A.P. and Quicke, D.L.J. (2002). History of Insects. Kluwer Academic Publishers. ISBN 1-4020-0026-X.  — detailed coverage of various aspects of the evolutionary history of the insects.
  • Skinner, Brian J., and Stephen C. Porter. The Dynamic Earth: An Introduction to Physical Geology. 3rd ed. New York: John Wiley & Sons, Inc., 1995. ISBN 0-471-60618-9}
  • Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999. ISBN 0-7167-2882-6
  • Taylor, P.D. and Wilson, M.A., 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews 62: 1-103.[1]

Notes

  1. ^ Image:Sauerstoffgehalt-1000mj.svg
  2. ^ Image:Phanerozoic Carbon Dioxide.png
  3. ^ Image:All palaeotemps.png
  4. ^ (1972) Glossary of Geology, 3rd ed., Washington, D.C.: American Geological Institute, p. 165. 
  5. ^ (1974) Great Soviet Encyclopedia, 3rd ed. (in Russian), Moscow: Sovetskaya Enciklopediya, vol. 16, p. 50. 
  6. ^ Dougal Dixon et al., Atlas of Life on Earth, (New York: Barnes & Noble Books, 2001), p. 215.
  7. ^ Stanley, Steven M. Earth System History. New York: W.H. Freeman and Company, 1999. ISBN 0-7167-2882-6 p. 280
  8. ^ Stanley, pp. 279-81
  9. ^ The Berriasian Age
  10. ^ Ibid.
  11. ^ Stanley, pp. 480-2
  12. ^ Stanley, pp. 481-2
  13. ^ “Warmer than a Hot Tub: Atlantic Ocean Temperatures Much Higher in the Past” PhysOrg.com. Retrieved 12/3/06.
  14. ^ Skinner, Brian J., and Stephen C. Porter. The Dynamic Earth: An Introduction to Physical Geology. 3rd ed. New York: John Wiley & Sons, Inc., 1995. ISBN 0-471-59549-7. p. 557
  15. ^ a b c MacLeod, N, Rawson, PF, Forey, PL, Banner, FT, Boudagher-Fadel, MK, Bown, PR, Burnett, JA, Chambers, P, Culver, S, Evans, SE, Jeffery, C, Kaminski, MA, Lord, AR, Milner, AC, Milner, AR, Morris, N, Owen, E, Rosen, BR, Smith, AB, Taylor, PD, Urquhart, E & Young, JR (1997). “The Cretaceous–Tertiary biotic transition”. Journal of the Geological Society 154 (2): 265–292. doi:10.1144/gsjgs.154.2.0265. 
  16. ^ Wilf, P & Johnson KR (2004). “Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record”. Paleobiology 30 (3): 347–368. doi:10.1666/0094-8373(2004)030 0347:LPEATE 2.0.CO;2. 
  17. ^ Kauffman, E (2004). “Mosasaur Predation on Upper Cretaceous Nautiloids and Ammonites from the United States Pacific Coast”. Palaios 19 (1): 96–100. Society for Sedimentary Geology. doi:10.1669/0883-1351(2004)019 0096:MPOUCN 2.0.CO;2. Retrieved on 2007-06-17. 
  18. ^ a b Shehan, P & Hansen, TA (1986). “Detritus feeding as a buffer to extinction at the end of the Cretaceous”. Geology 14 (10): 868–870. Retrieved on 2007-07-04. 
  19. ^ Aberhan, M, Weidemeyer, S, Kieesling, W, Scasso, RA, & Medina, FA (2007). “Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections”. Geology 35 (3): 227–230. doi:10.1130/G23197A.1. 
  20. ^ Sheehan, PM & Fastovsky, DE (1992). “Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana”. Geology 20 (6): 556–560. doi:10.1130/0091-7613(1992)020 0556:MEOLDV 2.3.CO;2. Retrieved on 2007-06-22. 

External links

Look up Cretaceous in
Wiktionary, the free dictionary.
Wikimedia Commons has media related to:
Cretaceous
  • UCMP Berkeley Cretaceous page
  • Bioerosion website at The College of Wooster
Cretaceous period
Lower/Early Cretaceous Upper/Late Cretaceous
Berriasian | Valanginian | Hauterivian
Barremian | Aptian | Albian
Cenomanian | Turonian | Coniacian
Santonian | Campanian | Maastrichtian
Mesozoic era
Triassic Jurassic Cretaceous
This text comes from Wikipedia. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. For a complete list of contributors for this article, visit the corresponding history entry on Wikipedia.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress